Ca(II)-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi.
نویسندگان
چکیده
We have shown that Ca(II) ions, ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid, LaCl3, and six known calmodulin inhibitors shift the yeast-mycelium dimorphic potential of Ceratocystis ulmi. Our data are consistent with the conclusions that Ca(II)-calmodulin interaction is necessary for mycelial growth in C. ulmi and that the absence of this interaction leads to the yeast phase.
منابع مشابه
Lipoxygenase inhibitors shift the yeast/mycelium dimorphism in Ceratocystis ulmi.
The yeast-mycelium dimorphism in Ceratocystis ulmi, the causative agent of Dutch elm disease, was switched by gossypol, nordihydroguaiaretic acid, and propylgallate. In each case the mycelial form was converted to the yeast form. These compounds are recognized lipoxygenase inhibitors. Inhibitors of cyclooxygenase and thromboxane synthetase did not cause mycelia to shift to the yeast form. We su...
متن کاملCalmodulin levels in the yeast and mycelial phases of Ceratocystis ulmi.
The calmodulin content of the yeast and mycelial phases of Ceratocystis ulmi was determined by radioimmunoassay. Calmodulin levels increased at the G1-S boundary of the cell cycle, coinciding with the first visible appearance of buds or germ tubes. However, in both phases the cellular calmodulin levels were equivalent. No differential synthesis was observed.
متن کاملInoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi.
We studied the inoculum size effect in Ceratocystis ulmi, the dimorphic fungus that causes Dutch elm disease. In a defined glucose-proline-salts medium, cells develop as budding yeasts when inoculated at > or = 10(6) spores per ml and as mycelia when inoculated at <10(6) spores per ml. The inoculum size effect was not influenced by inoculum spore type, age of the spores, temperature, pH, oxygen...
متن کاملRNAseq Analysis Highlights Specific Transcriptome Signatures of Yeast and Mycelial Growth Phases in the Dutch Elm Disease Fungus Ophiostoma novo-ulmi.
Fungal dimorphism is a complex trait and our understanding of the ability of fungi to display different growth morphologies is limited to a small number of model species. Here we study a highly aggressive dimorphic fungus, the ascomycete Ophiostoma novo-ulmi, which is a model in plant pathology and the causal agent of Dutch elm disease. The two growth phases that this fungus displays, i.e., a y...
متن کاملQuorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism.
AIMS For Ophiostoma (Ceratocystis) ulmi, the ability to undergo morphological change is a crucial factor for its virulence. To gain an understanding of quorum-sensing activity in O. ulmi as it relates to yeast-mycelium dimorphism control, this study examines the effects of branched-chain amino acids as well as their fusel alcohols and fusel acids as quorum sensing molecules. METHODS AND RES...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 159 1 شماره
صفحات -
تاریخ انتشار 1984